Autoregressive Conditional Neural Processes

Wessel P. Bruinsma^{*12}, Stratis Markou^{*2}, James Requiema^{*2}, Andrew Y. K. Foong^{*1}, Tom R. Andersson³, Anna Vaughan², Anthony Buonomo², J. Scott Hosking³⁴, Richard E. Turner¹²

*Equal contribution

¹Microsoft Research Al4Science, ²University of Cambridge, ³British Antarctic Survey, ⁴The Alan Turing Institute

The Eleventh International Conference on Learning Representations (ICLR 2023)

Collaborators

Wessel Bruinsma^{*12}

Stratis Markou*²

 $\begin{array}{c} {\sf James} \\ {\sf Requeima}^{*2} \end{array}$

 $\begin{array}{l} \text{Andrew} \\ \text{Foong}^{*1} \end{array}$

 ${\sf Tom} \\ {\sf Andersson}^3$

Anna Vaughan²

 $\begin{array}{c} {\sf Anthony}\\ {\sf Buonomo}^2 \end{array}$

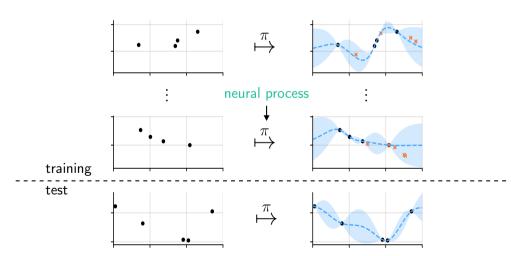
J. Scott Hosking³⁴

 $\begin{array}{c} {\sf Rich} \\ {\sf Turner}^{*12} \end{array}$

*Equal contribution

¹Microsoft Research Al4Science, ²University of Cambridge, ³British Antarctic Survey, ⁴The Alan Turing Institute

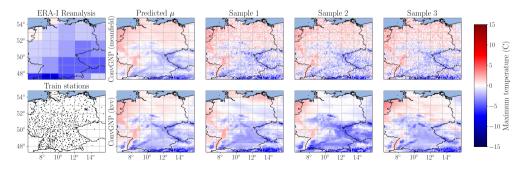
Meta-Learning and Neural Processes



The Appeal of Neural Processes

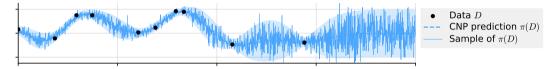
- $\checkmark~$ Extremely versatile and flexible
- $\checkmark\,$ Fast, probabilistic predictions

- $\checkmark~$ Simple to train
- $\checkmark\,$ Work well in practice
- Climate model downscaling (Markou et al., 2022):



But Neural Processes Are Not Without Challenges...

• Conditional neural process (CNP; Garnelo, Rosenbaum, et al., 2018):



3/6

		Non-Gaussian predictions		
CNPs (Garnelo, Rosenbaum, et al., 2018)	×	\checkmark	\checkmark	\checkmark
Gaussian NPs (Markou et al., 2022)	\checkmark	×	\checkmark	\checkmark
Latent-variable NPs (Garnelo, Schwarz, et al., 20)	18) 🗸	\checkmark	×	\checkmark
Autoregressive CNPs (AR CNPs; this work!) 🗸	\checkmark	\checkmark	×

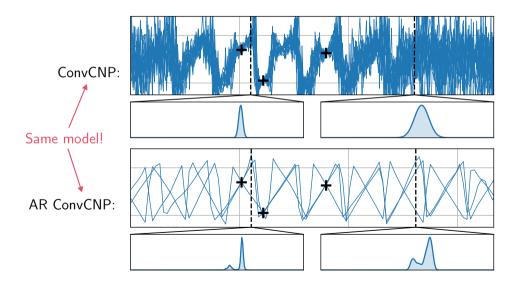
Autoregressive Conditional Neural Processes

• Idea: feed output of CNP back into the model in an autoregressive fashion:

$$q^{(\text{AR CNP})}(\mathbf{y}_{1:3} \mid D) = q(y_1 \mid D)q(y_2 \mid y_1, D)q(y_3 \mid y_1, y_2, D).$$
• AR modelling certainly not new, but not vet explored for NPs. CNP pred. of y_3 given y_1 , y_2 , and D

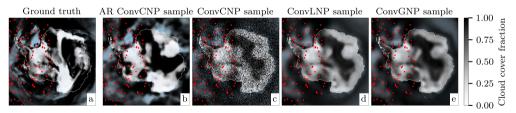
- ✓ Correlated and non-Gaussian predictions!
- \checkmark No modifications to model or training procedure!
- X Predictions depend on number and order of data (predictions no longer consistent)
- X Requires multiple forward passes of CNP (Prop. 2.2 offers a partial remedy!)

Example: ConvCNP (Gordon et al., 2020) Trained on Sawtooth Data 5



So What Else Is in the Paper?

- Prop. 2.1: In an idealised case, AR CNPs are guaranteed to perform better than GNPs.
- A detailed comparison of AR CNPs and neural density estimators (NDEs).
- Exceptional performance of the AR ConvCNP (Gordon et al., 2020) in 60 synthetic scenarios.
- A variety of real-world experiments, including a challenging cloud cover experiment:



Code: https://github.com/wesselb/neuralprocesses

Please come see us at the poster, or contact us at wbruinsma@microsoft.com! :)